Drive Essentials

“The best drive train…
- is more important than anything else on the robot
- meets your strategy goals
- can be built with your resources
- rarely needs maintenance
- can be fixed within 4 minutes
- is more important than anything else on the robot”

-Andy Baker
Set a Schedule!

- Get something driving early
 - End of week 2
 - Practice for operators
 - Strategy lessons
- Continuously improve
 - Good enough is not good enough
- Finish final drive train by week 4
Note that...

- Good drive bases win consistently
- Reliable drive bases win awards
- Well-controlled, robust drive bases win **Championships**
- **Boat anchor** = any heavy mass that does not move
- A non-reliable or non-repairable drive base will turn your robot into a **boat anchor**
Note that...

- Speed is game dependent, however, it increases every year.
 - Controllable top speed: 15 ft/sec
 - Average 1-speed rate: 9 ft/sec
 - Good pushing speed: 5 ft/sec
Center of gravity (Cg)

- Robot mass is represented at one point
- **Mobility** increases when Cg is low and centered
- High parts = light weight
- Low parts = heavy (within reason)

Ms Mobile

Battery motors, pump, etc.

Battery motors pump, etc.

Mr Tippy
Drive Essentials

- Decide **together** after kickoff:
 - Speed, power, shifting, mobility
- Use most **powerful** motors on drive train
- Give software team **TIME** to work
- Give drivers **TIME** to drive
- Know your **resources**
Drive systems Information

- Systems differ in **advantages and disadvantages**.

- **Motion Control**
 - **Holonomic**: Controllable DOF equal Positional DOF
 - **Non-holonomic**: Controllable DOF is less than Positional DOF
Holonomic
Non-holonomic
Basic Drive Types

- **Non-holonomic**
 - Tank

- **Holonomic**
 - Crab
 - Omni –including Mecanum
Tank

- Moves in one direction
- Cannot drive left or right without turning
- Navigate on difficult ground
- Simple to construct
- Pushes well in direction of travel

- Classic tank drive
- Wheels can be added at a lower contact point
Crab

- Typically has four wheels
- Diverse
 - Tank
 - Car
 - Swerve drive
- Involves eight motors
 - drive motors and turning motors
- Turning drives require encoders
- Complex software

- High traction wheels
- Pushes and holds position
- Difficult to drive
- Wheel turning delay
Omni

- Moves in one direction
- Typically has three wheels
- Can drive forward, reverse, left, right, turn right and turn left

- Maneuverable on flat surface
- Difficult to drive on terrain
- Difficult to push an object
- Immediate turning
- Incline difficulty
Mecanum

- Typically has 4 wheels
- 4 independent wheels
- Weight should be balanced on all four wheels

- Maneuverable on a flat surface
- Can incline in forward position only
- Pushes fairly reasonably
4 wheel drive, 2 gearboxes

- Easy to design
- Easy to build
- Inexpensive
- Powerful
- Sturdy and stable

- Not agile
 - Turning is difficult
 - Adjustments needed
4 wheel drive, 4 gearboxes

- Easy to design
- Easy to build
- Powerful
- Sturdy and stable
- Many options
 - Mecanum, traction

- Heavy
- Costly
6 wheel drive, 2 gearboxes

*Being Agile
1. Middle wheel at lower point of contact
2. Omni wheels on front, back, or both

+ Easy to design
+ Easy to build
+ Powerful
+ Stable
+ Agile*

**- depending on wheel type

- Heavy**
- Expensive**
Tank tread drive, 2 gearboxes

- Powerful
- Very stable
- Not agile
- Heavy
- Inefficient
- Not fast
- Expensive
- Hard to maintain

Sole ability: to go over objects
3 wheel drive, 2 gearboxes

- Light weight
- Fast
- Various types
- Not standard
Drive Effectiveness

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Pushing Power</th>
<th>Quickness of Manoeuverability</th>
<th>Effect of Weight Distribution</th>
<th>Effectiveness in Terrain</th>
<th>Intuitiveness of Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Drive with Two Wheels</td>
<td>M</td>
<td>G</td>
<td>M</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>Tank Drive with Four Wheels</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Tank Drive with Six Wheels</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Tank Drive with Eight Wheels</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Omni Drive with 3 Wheels</td>
<td>P</td>
<td>E</td>
<td>P</td>
<td>P</td>
<td>E</td>
</tr>
<tr>
<td>Omni Drive with 4 Wheels</td>
<td>M</td>
<td>E</td>
<td>P</td>
<td>P</td>
<td>E</td>
</tr>
<tr>
<td>Mecanum Drive with 4 Wheels</td>
<td>G</td>
<td>E</td>
<td>M</td>
<td>G*</td>
<td>E</td>
</tr>
<tr>
<td>Crab Drive with 4 Wheel Steering</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>G*</td>
<td>M*</td>
</tr>
<tr>
<td>Crab Drive with Pair Wheel Steering</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>M*</td>
</tr>
<tr>
<td>Swerve Drive with 4 Wheel Steering</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>M*</td>
</tr>
<tr>
<td>Car Drive with 2 Wheel Steering</td>
<td>G</td>
<td>M</td>
<td>G</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Car Drive with 4 Wheel Steering</td>
<td>E</td>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

* in forward direction only
* can improve with software
* can improve with software
Quiz time
#1

- A tank tread drive with two gearboxes can easily
 - A. Push
 - B. Go over objects
 - C. Be designed
According to Andy Baker, “the best drive train …

A. Is the most important thing on your robot”
B. Can be fixed within 15 minutes
C. Needs maintenance throughout the season
#3

- When adding wheels between any two driven wheels what should you do? Why?
 A. Position them at a higher level of contact
 B. Position them at the same level
 C. Position them at a lower level
What type of wheel is this?
A. Omni
B. Mecanum
C. Tank
#5

- How many motors should a crab drive have?
 A. Eight
 B. Four
 C. Two
#6

- Name some characteristics of the following drive types.
Tank tread drive, 2 gearboxes

- Powerful
- VERY Stable
- NOT AGILE
- HEAVY
- Inefficient
- Not fast
- EXPENSIVE
- Hard to maintain

Sole ability: to go over objects
4 wheel drive, 2 gearboxes

- Easy to design
- Easy to build
- Inexpensive
- Powerful
- Sturdy and stable

- Not agile
 - Turning is difficult
 - Adjustments needed
3 wheel drive, 2 gearboxes

- Light weight
- Fast
- Various types
- Not standard
4 wheel drive, 4 gearboxes

- Driven Wheels

- + Easy to design
- + Easy to build
- + Powerful
- + Sturdy and stable
- + Many options
 - Mecanum, traction

- - Heavy
- - Costly
6 wheel drive, 2 gearboxes

- Easy to design
- Easy to build
- Powerful
- Stable
- Agile*

- Heavy **
- Expensive **

** - depending on wheel type